In-duct air cleaning devices: Ozone emission rates and test methodology

Glenn Morrison, PI Missouri S&T Richard Shaughnessy, PI University of Tulsa Jeff Siegel, PI University of Texas at Austin

Overview: electronic in-duct devices

- California regulates ozone emitting air cleaners
 - Excludes in-duct air cleaners due to lack of test method or lab/field data on ozone emissions
- Central objectives of project
 - Develop test method: ozone emission rate
 - Obtain lab and field data on emission rates and resulting indoor concentrations
- Benefits to California
 - Test method and data to support possible inclusion of in-duct devices in ARB air cleaner regulation

Ozone

- Ozone toxicology highlights
 - 40 ppb NOAEL (Adams, 2002)
- Ozone epidemiology highlights (ambient) (EPA, 2011)
 - Wheezing, difficulty breathing in infants
 - Increased asthma related symptoms and asthma hospital admissions
 - Short term increased mortality

ARB and UL 867

- ARB air cleaner regulation (2007)
 - Devices tested using UL 867 must meet 50 ppb ozone concentration limit 2" from face

Emission rates of air cleaners

In-duct, electrically connected air cleaners

- Multiple types
 - Plate and wire electrostatic precipitator
 - Ozone generator
 - Ion generator
- Existing measurements
 - 0-60 mg h⁻¹
 - Viner et al. (1992), Hanley et al. (1995), Bowser et al. (1999)
 - Up to 200 ppb O₃ in house with device installed as directed by manufacturer
 - Emmerich and Nabinger et al. (2000)

Specific Objectives

- 1) develop and test a method of measuring the ozone emission of in-duct electrically-connected air cleaners ("device") and
- 2) obtain real-world data on ozone concentration increases due to use of these devices in field sites
- apply the method to a number of commercially available units in the lab to measure emission rates, and
- 4) model the impact of in-duct air cleaners in California buildings.

Tasks

- Task 1. Candidate device survey of in-duct electronic air cleaners
- Task 2. Laboratory development of test method (Objective 1 and 3)
- Task 3. Field testing of in-duct devices and development of field test method (Objective 2)
- Task 4. California field test of 7 homes and 1 commercial building (Objective 2)
- Task 5. Analysis of California homes characteristics and anticipated indoor ozone concentrations (Objective 4)
- Task 6. Project management and reporting

Methods

Candidate device survey

- Candidate device survey based on
 - Opinions and experience of California installers
 - 72 contacted, 34 responded
 - "What brands of electronic air cleaners do you sell"
 - "What are your most popular products"
 - California distributors
 - Contacts with manufacturers
 - Opinions and expressed testing interests of agencies (ARB, CPSC, Health Canada, National Research Council of Canada, EPA)

- Develop standard test method
 - Laboratory based
 - Ducted system
 - Realistic operational conditions
 - Range of flow rates
 - Emission rate based on increase in ozone concentration across device:
 - Emission rate = concentration increase* volumetric flow rate

- Test apparatus
 - Closed loop
 - Flow up to ~3000 m³ h⁻¹
 - Able to adjust temperature and RH
 - Activated carbon filtration
 - Able to accommodate wide variety of in-duct air cleaners
 - Ability to measure ozone across installed device

Test apparatus

Test apparatus

Devices

based results of Task 1

Air Cleaner	Technology
1	Ultraviolet light
2 a	Photohydroionization
2b	Photohydroionization
2c	Photohydroionization
3	Electrostatic Precipitation
4	Photocatalytic Oxidation
5a	Ultraviolet light
5b	Ultraviolet light
6a	Ozone generator
6b	Ozone generator
7	UV / PCO / Carbon
8	Ultraviolet light

Some devices tested

11/6/2013

- Field tests
 - Method development in Tulsa field site
 - Site selection
 - Incremental increase in ozone concentration
 - In-situ ozone emission rate (OER)
 - Application of method in California field homes
 - Site selection
 - Incremental increase in ozone concentration
 - In-situ ozone emission rate (OER)

11/6/2013

- Tulsa field site
 - Similar to small California homes
 - Presence of central air system
 - Access to air handler
 - Reviewed 10 houses, chose 1

11/6/2013

- Field test method (highlights)
 - Measurement objectives
 - Incremental increase in ozone concentration
 - Effective ozone emission rate (OER)
 - Building prep
 - Close windows, doors, fans off (reduce air exchange)
 - Install device
 - Set CO₂ and O₃ sampling locations
 - Supply
 - Return
 - Room center
 - Outdoor

- Field test method (highlights)
 - Specific measurements
 - Ozone concentration with device on and off
 - Indoor/outdoor measurements
 - Simultaneous measurement of
 - Ozone decay rate (ODR)
 - Air exchange rate (AER)
 - Effective ozone emission rate (OER)
 - $OER1 = V[(C_{O3})(AER + ODR) P(AER) C_{O3,out}]$
 - $OER2 = (C_{O3} C_{O3,o})(AER + ODR)V$

- California home selection
 - Installer recommendations
 - Homes with devices already installed
 - Convenience sample
 - List-serves
 - Emails to colleagues
 - Vetting
 - Access, unoccupied during tests
 - Smaller homes (800-1500 ft²)
 - Appropriate central air facilities

- California sites selected
 - 6 homes
 - Single-family residences
 - Davis/ Sacramento area
 - 990 2345 ft²
 - Closet or attic access to air handler
 - 1 to 2 devices tested per home
 - 1 school
 - commercial system pre-installed

- Building simulations
 - Single zone
 - Standard mass balance model
 - California home characteristics
 - Predict range of indoor ozone concentrations
 - Multiple zone
 - Identify complex phenomena
 - Wind induced spatial/temporal "hot spots"

Analysis of California homes characteristics and estimated indoor ozone concentrations

Ozone decay rate (reactions in gas and with surfaces)

• Single zone: model inputs

	Low	Middle	High	Standard House	At Risk House
Source emission rate (S'), mg h ⁻¹	0	100	300	100	50
Air exchange rate (I), h ⁻¹	0.1	0.5	3	0.5	0.1
Volume (V), m ³	75	350	900	350	150
Penetration (P)	0.6	0.8	1.0	0.8	1.0
Decay rate (k _d), h ⁻¹	1	4	12	4	1.5
Recirculation air exchange (I _r), h ⁻¹	2	5.7	9	5.7	2
HVAC penetration (P _r)	0.75	0.85	0.95	0.85	1
Outdoor concentration (C _o), ppb	0	60	140	0	0

- Multiple zone
 - Model framework: CONTAM 3.0 (NIST)
 - Wind speed
 - Wind direction
 - Ambient ozone
 - Variable air handling unit duty cycle
 - Surface reactivity

MODEL AH-A (2)
1039 S.F.
1-STORY
2 BR, I BATH, 2 ADD'L ROOMS
NO GARAGE / NO BASEMENT

Building AH-14 (CONTAM)

MAIN	FL	.00R
------	----	------

Parameter				
Exterior wall leakage	0.25	in ² /ft ²	17.4	cm ² /m ²
area				
Interior wall leakage	0.5	in ² /ft ²	34.7	cm ² /m ²
area				
Total AHU flowrate	1243	cfm	2113	m ³ /h
Floor area	1039	ft ²	96.5	m ²
Volume	8282	ft ³	25.0	m ³
Interior surface area	4736	ft ²	440	m^2
Ambient temperature	68	F	20	С
Absolute pressure	14.7	psi	101325	Pa

Ambient ozone

Simulation parameters

	Wind angle (degrees)		Wind Speed (m/s)		Ambient ozone	Deposition Velocity (m/h)		AHU duty Cycle (%)							
	0	90	135	180	270	2	5	8		0.72	2.0	0	20	50	100
Steady State	✓	✓	\checkmark	✓	✓	✓	✓	✓		✓	\checkmark	✓			✓
Dynamic	✓						✓		✓	√	✓	✓	✓	✓	✓

Results

- Devices that may generate ozone
 - Electrostatic precipitators (EP)
 - Electronically enhanced filters (EEF)
 - Ultraviolet light bulbs (UV)
 - Photocatalytic oxidation (PCO)
 - Dedicated generators of ozone, hydroxyl radicals, hydroperoxide, etc.
 - Hybrid systems (e.g. EP + UV + PCO)

Type of devices tested

Air Cleaner	Technology
1	Ultraviolet light
2a	Photohydroionization
2b	Photohydroionization
2c	Photohydroionization
3	Electrostatic Precipitation
4	Photocatalytic Oxidation
5a	Ultraviolet light
5b	Ultraviolet light
6a	Ozone generator
6b	Ozone generator
7	UV / PCO / Carbon
8	Ultraviolet light

- Standard test method
 - Major sections of device
 - Device test and ozone measurement, Air treatment,
 Flow generation, Optional conditioning section
 - Measurements and specifications
 - Ozone, Temperature, Flow rates, Relative humidity, Electrical power
 - Detailed reporting and calculations
 - Method qualification and quantification limits
 - Device emission rates over range of flow rates

- Qualification of test apparatus
 - $MQL = 2.3 \text{ mg h}^{-1}$
 - Repeatability (shown Device 5)

Emission rate results

Emission rate dependence on flow rate

 Dependence of emission rate on T, RH and flow rate (air cleaner 3)

Task 2: Summary of results

- Emission rates vary from < MQL to 350 mg h⁻¹
- Highest emission rates from "ozone generators" using UV lamps
- Two devices exhibited flow dependence (opposite directions)
- One device exhibited temperature and RH dependence

House characteristics: air exchange rates

Field tests: ozone decay rates

Field tests: incremental increase in ozone

Ozone emission rates (OER 1 and 2)

• Evidence of temperature dependence

(Device 8)

Task 3 and 4: Summary of results

- Field method developed in Tulsa test house
- Two devices increased indoor ozone > 50 ppb
 - Both were intentional ozone generators using UV lamps
- Same two devices exhibited emission rates > 100 mg h⁻¹ in multiple homes
- Evidence of temperature effect
 - Peak concentration >200 ppb for device 8

Single zone model: standard house

Single zone model: at risk house

- Multiple zone
 - 100 % AHU on, steady state

- Multiple zone model
 - AHU off, device on
 - Steady state

- Multiple zone model
 - AHU off, device on
 - Steady state

Task 5 summary

- Single zone model
 - Standard home: need ~150 mg/h to achieve 50 ppb
 - At risk home: need ~ 27 mg/h to achieve 50 ppb
- Multiple zone model
 - Wind direction can result in substantial differences among rooms
 - Short-term peaks can occur when AHU turns on

Discussion

Comparison field/laboratory

Discussion

Predicted and realized incremental increase in

ozone

Summary

- Test method and apparatus
- Device testing
 - 12 devices
 - Emission rates \sim < 2.3 to > 350 mg h⁻¹
- Field tests
 - Incremental concentration increase up to 170 ppb
 - Some devices had erratic emission rates
- Simulations
 - Small, low reactivity, low AER houses more at risk
 - Typical house requires 150 mg h⁻¹ to reach 50 ppb

Conclusions

- Electrically connected in-duct devices can increase residential ozone concentrations > 50 ppb
 - Further field tests not necessary
- Laboratory test method adequate to predict field impact
- Need better understanding of installed device occurrence
 - Consumer installation of devices

Acknowledgements

- California Air Resources Board
- Occupants and homeowners
- David Reisdorph, Nishanthini Vijayakumar Shakila, Adcharee Karnjanapiboonwong, Mikhil Shetty, Atila Novoselac, Kristia Parker, Joshua Rhodes, Megan Gunther, Christina Phensy, Mark Jackson, Shahana Khurshid, April Rocha
- Deborah Bennett, UC Davis
- Jonathan Reyes, Sawyer Heating
- Donations from dealers and manufacturers

Questions?

Extra slides

Indoor ozone concentration depends on device emission rate, S

Ozone decay rate (reactions with surfaces)

Single zone model: influence of ambient O₃

